The DHS Program Geospatial Covariate Datasets Manual

Third Edition

Benjamin Mayala¹
Rose Donohue¹

ICF
Rockville, Maryland, USA

January 2022

¹ The DHS Program, ICF

Corresponding author: Benjamin Mayala, International Health and Development, ICF, 530 Gaither Road, Suite 500, Rockville, MD 20850, USA; phone: 301-572-0507; email: Ben.Mayala@icf.com
Acknowledgement: The authors would like to thank Trevor Croft, Clara R. Burgert, David Eitelberg, Tom D. Fish and Trinadh Dontamsetti for their work to get earlier versions of this dataset published.

This publication and dataset were developed with support provided by the United States Agency for International Development (USAID) through The Demographic and Health Surveys Program (#AID-OAA-C-13-00095). The views expressed are those of the authors and do not necessarily reflect the views of USAID or the United States government.

The DHS Program assists countries worldwide in the collection and use of data to monitor and evaluate population, health, and nutrition programs. Information on The DHS Program may be obtained from ICF, 530 Gaither Road, Suite 500, Rockville MD, 20850, USA; telephone: 301-407-6500; fax: 301407-6501; e-mail: info@DHSprogram.com; website: www.DHSprogram.com.

Recommended Citation:

Mayala, Benjamin and Rose Donohue. 2022. The DHS Program Geospatial Covariate Datasets Manual (Third Edition). Rockville, Maryland, USA: ICF.
CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rationale</td>
<td>4</td>
</tr>
<tr>
<td>2 DHS Clusters</td>
<td>4</td>
</tr>
<tr>
<td>3 Extraction Methods</td>
<td>4</td>
</tr>
<tr>
<td>4 Notes about the Data Description</td>
<td>6</td>
</tr>
<tr>
<td>5 Data Description</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>38</td>
</tr>
</tbody>
</table>
1 RATIONALE

The DHS Program routinely collects GPS location data of surveyed clusters (DHS, MIS, and AIS surveys). These data are processed and made available upon request for download through The DHS Program website following the application of geospatial displacement on the GPS cluster data to protect the confidentiality of respondents.

The data are utilized by thousands in academia (students and researchers), government (researchers, decision makers, program planners, and implementing agencies) and the private sector. The nature of these requests made it apparent that The DHS Program’s data are often analyzed in conjunction with geospatial covariates to determine the impact of location on health outcomes. However, these covariate data often come from multiple different sources at different levels of national coverage and with varying quality, making it difficult for researchers to link The DHS Program’s data to these covariates and conduct analyses. To address this, The DHS Program Geospatial Team endeavored to prepare and make freely available a set of standardized files of commonly used geospatial covariates which can easily be linked to DHS datasets without the need for the GPS data itself, increasing accessibility to those with little or no GIS experience.

2 DHS CLUSTERS

For all the extractions, we used the publicly available cluster locations published by The DHS Program. The GPS location of the center of each cluster is recorded during either the fieldwork or listing stage of the survey. Those locations are processed to verify they are within the correct administrative units. To protect the confidentiality of our respondents, the locations are displaced – sometimes called ‘geo-masked’ or ‘geo-scrambled’. Each of the clusters was displaced from the actual location by up to 2 kilometers (for urban points) and up to 10 kilometers (for rural points). We ensure the displaced clusters do not change administrative units during the displacement procedure. More information about the displacement procedure used can be found in Burgert et al. (2013).

3 EXTRACTION METHODS

The covariate variables came from raster data. Raster data, such as images and modeled surfaces, rely on pixels or cells to convey their data values. The conceptual framework, Figure 1, provides an overview of the extraction process that was undertaken using the following steps:

Step 1 - Geospatial covariate layers (i.e. raster layers) that are relevant to The DHS Program indicators were acquired from publicly available remote sensing and modeling sources. GPS coordinates representing the location of a survey cluster were obtained from The DHS Program.

Step 2 - Mosaicing (if needed) was undertaken to spatially mosaic (stitch together) modeled surfaces delivered in tiled format.
Step 3 - Raster datasets were imported, re-projected to a uniform coordinate reference system, processed to uniform spatial resolution, and linked to GPS using scripts coded in R programming language (R Core Team 2021).

Step 4 - Finally, we extracted the values at the point.

All covariates were re-projected to the same coordinate reference system (the standard-based World Geodetic System 1984).

While the covariate raster layers were available in a variety of different spatial resolutions depending on the source, all raster layers were resampled to a 5 x 5 km spatial resolution. Continuous variables were resampled using bilinear resampling, whereby a bilinear interpolation is performed, and the cell’s new value is determined based on a weighted distance average of the four nearest cells. Categorical variables were resampled using a nearest neighbor assignment, which is preferred for categorical variables as it does not change the cells’ values. The population count data, which was available from multiple sources at a 1 x 1 km resolution was aggregated to the 5 x 5 km resolution to ensure the total population count remained unchanged.

Finally, the values of the covariates were extracted at the location of each displaced cluster using a script in R.
4 NOTES ABOUT THE DATA DESCRIPTION

- Covariates are extracted for the years 2000, 2005, 2010, 2015, and 2020 where data is available. If data is not available for those specific years, data is not included for the missing years or is extracted for the year closest to the years listed. See the detailed information for each covariate in the Data Description to identify the years extracted for each individual covariate.
- If the data for a covariate is not available, its field will be "NA" in the covariate dataset.
- If no covariate data is available for an entire country, the covariate dataset will not include a column for that covariate.
- All covariates were extracted at the displaced cluster coordinates. Detailed information on the displacement process can be found in Burgert et al. (2013).
DATA DESCRIPTION

Table 1. Overview of geospatial covariates included in this manual.

<table>
<thead>
<tr>
<th>Covariate Name</th>
<th>Covariate Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All_Population_Count</td>
<td>Total number of people</td>
</tr>
<tr>
<td>Aridity</td>
<td>Aridity index ranging from most arid to most wet</td>
</tr>
<tr>
<td>Day_Land_Surface_Temp</td>
<td>Annual daytime land surface temperature</td>
</tr>
<tr>
<td>Diurnal_Temperature_Range</td>
<td>Diurnal temperature range (difference between the station’s maximum and minimum temperatures within one day)</td>
</tr>
<tr>
<td>Drought_Episodes</td>
<td>Number of drought episodes (categorized)</td>
</tr>
<tr>
<td>Elevation</td>
<td>Shuttle Radar Topography Mission (SRTM) near-global Digital Elevation Models (DEM)</td>
</tr>
<tr>
<td>Enhanced_Vegetation_Index</td>
<td>Enhanced vegetation index value ranging from least vegetation to most vegetation</td>
</tr>
<tr>
<td>Frost_Days</td>
<td>Number of days (per month) in which the minimum temperatures met the criteria to be categorized as a “frosty” day</td>
</tr>
<tr>
<td>Global_Human_Footprint</td>
<td>Global human footprint index (from extremely rural to extremely urban)</td>
</tr>
<tr>
<td>Growing_Season_Length</td>
<td>Number of days (categorized) within the period of temperatures above 5°C when moisture conditions are considered adequate for crop growth</td>
</tr>
<tr>
<td>Irrigation</td>
<td>Proportion of area equipped for irrigation</td>
</tr>
<tr>
<td>ITN_Coverage</td>
<td>Proportion of the population protected by insecticide-treated bednets (ITNs)</td>
</tr>
<tr>
<td>Land_Surface_Temperature</td>
<td>Annual land surface temperature</td>
</tr>
<tr>
<td>Livestock (cattle, chicken, ducks, goats, pigs, sheep)</td>
<td>Density of livestock</td>
</tr>
<tr>
<td>Malaria_Incidence</td>
<td>Number of clinical cases of Plasmodium falciparum malaria per person</td>
</tr>
<tr>
<td>Malaria_Prevalence</td>
<td>Parasite rate of Plasmodium falciparum (Plasmodium falciparum) (PfPR) in children between the ages of 2 and 10 years old</td>
</tr>
<tr>
<td>Maximum_Temperature</td>
<td>Maximum temperature</td>
</tr>
<tr>
<td>Mean_Temperature</td>
<td>Mean temperature</td>
</tr>
<tr>
<td>Minimum_Temperature</td>
<td>Minimum temperature</td>
</tr>
<tr>
<td>Nightlights_Composite</td>
<td>Nighttime luminosity</td>
</tr>
<tr>
<td>Night_Land_Surface_Temp</td>
<td>Nighttime land surface temperature</td>
</tr>
<tr>
<td>Potential_Evapotranspiration</td>
<td>Potential evapotranspiration</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Average precipitation (per month)</td>
</tr>
<tr>
<td>Rainfall</td>
<td>Annual rainfall</td>
</tr>
<tr>
<td>Temperature (January, February, March, April, May, June, July, August, September, October, November, December)</td>
<td>Average temperature in a specific month</td>
</tr>
<tr>
<td>Travel_Times</td>
<td>Time required to reach a high-density urban center</td>
</tr>
<tr>
<td>U5_Population</td>
<td>Total number of people under the age of 5 (U5)</td>
</tr>
<tr>
<td>UN_Population_Count</td>
<td>UN-adjusted count of people</td>
</tr>
<tr>
<td>UN_Population_Density</td>
<td>UN-adjusted population density</td>
</tr>
<tr>
<td>Wet_Days</td>
<td>Number of days (per month) receiving ≥0.1 mm precipitation</td>
</tr>
</tbody>
</table>
Column Name: All Population Count YEAR

Derived Data Set: WorldPop

Derived Data Set Cell Size: 0.000833333 decimal degrees (~100 m)

Summary Statistic: Sum

Year: 2000, 2005, 2010, 2015, 2020

Units: Number of people

Description:

The count of individuals living in the 5 x 5 km pixel in which the DHS survey cluster is located at the time of measurement (year).

An understanding of the numbers, characteristics and locations of human populations underpins operational work, policy analyses and scientific development globally across multiple sectors. Most methods for estimating population rely on census data. However, in most countries population censuses are conducted every 10 years at best and can be longer in many low-income countries (Alegana et al. 2015). Thus, data from the census can often be outdated, unreliable, and have low granularity (Tatem 2014). New data sources and recent methodological advances made by the WorldPop project (University of Southampton) now provide high resolution, open, and contemporary data on human population, allowing accurate measurement of local population characteristics across national and regional scales. The methodology used by WorldPop to estimate the annual subnational census-based figures can be accessed in Lloyd et al. (2019).

Citation:

Column Name: Aridity YEAR

Derived Data Set: CRU TS v. 4.05

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Year: 2000, 2005, 2010, 2015, 2020

Units: Index between 0 (most arid) and 300 (most wet).

Description:

The dataset represents the average monthly precipitation divided by average monthly potential evapotranspiration, an aridity index defined by the United Nations Environmental Programme (UNEP).

Aridity Index (AI), which is defined as the ratio of annual precipitation to annual potential evapotranspiration, is a key parameter in drought characterization (Salem 1989; Tereshchenko et al. 2015). Investigating variation of aridity and the role of climate variables are thus of great significance for managing agricultural water resources and maintaining regional ecosystem stability. If the aridity index becomes higher than normal in a region, the climate tends to suffer from drought and water resource shortages (Allen et al. 1998; Li et al. 2017).

The global aridity that was used in the previous extraction of covariates (First Edition) was modeled using data available from the WorldClim Global Climate Data (Hijmans and Graham 2006) as input. This is one grid layer representing the annual average over the 1950 – 2000 period.

We have updated the aridity covariate for the period of 2000, 2005, 2010 2015, and 2020 using high resolution grids obtained from the CRU datasets (Harris and Jones 2017; Harris et al. 2014). We used precipitation and potential evapotranspiration datasets to quantify the aridity index covariate following methods described in detail by Arnold (1997).

Citation:

https://doi.org/10.1038/s41597-020-0453-3

https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
Column Name: Day Land Surface Temp YEAR

Derived Data Set: MYD11C3: MODIS/Aqua Land Surface Temperature and Emissivity Monthly

Derived Data Set Cell Size: .05 decimal degrees (~6 km)

Summary Statistic: Mean

Units: Yearly average temperature in Degrees Celsius

Description:

The mean annual daytime land surface at the DHS survey cluster location.

Land surface temperature (LST) estimates the temperature of the land surface (skin temperature), which is detected by satellites by looking through the atmosphere to the ground. The LST is not equivalent to near-surface air temperature measured by ground stations, and their relationship is complex from a theoretical and empirical perspective (Vancutsem et al. 2010; Yang, Cai, and Yang 2017; Zhou et al. 2012).

The global LST [day] grids represent daytime temperature in degrees Celsius at a spatial resolution of 0.05° x 0.05°. The grids are produced using Moderate Resolution Imaging Spectroradiometer (MODIS) product (MYD11C3). The MYD11C3 is a monthly composited average, derived from the daily global product (MYD11C1) and distributed by the Land Processes Distributed Archive Center (LPDAAC). The type of "surface" MODIS measures varies as a function of location. In some places, the measurement represents the skin temperature of the bare land surface. In other places, the temperature represents the skin temperature of whatever is on the land, including ice, canopy cover or human-made structures (https://neo.sci.gsfc.nasa.gov). LST surface maps can be used in a number of ways to assess surface temperature differentials as they relate to different land cover types, ecosystems, and health impacts.

Citation:

Column Name: Diurnal Temperature Range YEAR

Derived Data Set: [CRU TS v. 4.05](https://doi.org/10.1038/s41597-020-0453-3)

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Year: 2000, 2005, 2010, 2015, 2020

Units: Degrees Celsius

Description:

The average diurnal temperature range at the DHS survey cluster location. Diurnal temperature range is the difference between the station’s maximum and minimum temperatures within one day. This dataset was produced by taking the average of the twelve monthly datasets.

The Climate Research Unit (CRU) of the University of East Anglia, UK, produces a range of global climate time series gridded data, which are derived from meteorological stations across the world’s land areas. The datasets are provided on high resolution (0.5 x 0.5 degrees) grids over the period 1901-2016 (Harris and Jones 2017; Harris et al. 2014). The main purpose for which this dataset was constructed was to provide modelers (climate and environmental) with some of the inputs they require to run their models. These data have found extensive use in numerous geospatial modeling and mapping studies (Caminade et al. 2014; Chabot-Couture, Nigmatulina, and Eckhoff 2014; Graetz et al. 2018; Osgood-Zimmerman et al. 2018; Rogers and Randolph 2006).

Citation:

https://doi.org/10.1038/s41597-020-0453-3

https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
Column Name: Drought Episodes

Derived Data Set Cell Size: 0.0417 decimal degrees (~5 km)

Summary Statistic: Mode

Year: Based on 1980-2000 precipitation data

Units: Individual classes between 1 (Low Drought) and 10 (High Drought)

Description:
The average number of drought episodes (categorized between 1 (low) and 10 (high)) at the DHS survey cluster location.

The global drought episodes dataset is produced by the International Research Institute for Climate Prediction's (IRI) Weighted Anomaly of Standardized Precipitation (WASP). Utilizing average monthly precipitation data, the WASP assesses the precipitation deficit or surplus over a three month temporal window that is weighted by the magnitude of the seasonal cyclic variation in precipitation. The three months' averages are derived from the precipitation data and the median rainfall for the 21 year period is calculated for each grid cell. Grid cells where the three month running average of precipitation is less than 1 mm per day are excluded. Drought events are identified when the magnitude of a monthly precipitation deficit is less than or equal to 50 percent of its long-term median value for three or more consecutive months. Grid cells are then divided into 10 classes having an approximately equal number of grid cells. Higher grid cell values denote higher frequencies of drought occurrences (Dilley et al. 2005).

Citation:

Column Name: Elevation

Derived Data Set: Shuttle Radar Topography Mission Near-global Digital Elevation Models

Derived Data Set Cell Size: 0.008333 decimal degrees (~1 km)

Summary Statistic: Mean

Year: 2000

Units: meters

Description:

A Digital Elevation Model (DEM) represents the topographic surface of the bare Earth, therefore excluding trees, buildings, and any additional surface objects.

The Shuttle Radar Topography Mission (SRTM) collected radar data over the Earth’s land surface while aboard the space shuttle Endeavor from February 11-22, 2000. The National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA) collaborated in this international project to produce the first near-global land elevation product, covering over 80% of the globe. Radar interferometry was used to produce this digital elevation model.

Citation:

Column Name: Enhanced Vegetation Index YEAR

Derived Data Set: Vegetation Index and Phenology (VIP) Phenology EVI-2 Yearly Global 0.05Deg CMG V004

Derived Data Set Cell Size: 0.05 decimal degrees (~5 km)

Summary Statistic: Mean

Units: Vegetation index value between -1 (least vegetation) and 1 (most vegetation).

Description:

The average vegetation index value at the DHS survey cluster at the time of measurement (year).

EVI composites are produced globally from data collected by the MODIS sensor on the Terra satellite (MOD13A3). The MODIS EVI products are computed from atmospherically corrected bi-directional surface reflectance data that have been masked for water, clouds, heavy aerosols, and cloud shadows. These data are used for global monitoring of vegetation condition.

Citation:

https://doi.org/10.5067/measures/vip/vipphen_evi2.004.
Column Name: Frost Days YEAR

Derived Data Set: CRU TS v. 4.05

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Units: Days

Description:
The average number of days per month in which the minimum temperatures of the DHS survey cluster location met the criteria to be categorized as a “frosty” day. This dataset was produced by taking the average of the twelve monthly datasets, which represent the days per month, for a given year.

The Climate Research Unit (CRU) of the University of East Anglia, UK, produces a range of global climate time series gridded data, which are derived from meteorological stations across the world’s land areas. The datasets are provided on high resolution (0.5 x 0.5 degrees) grids over the period 1901-2016 (Harris and Jones 2017; Harris et al. 2014). The main purpose for which this dataset was constructed was to provide modellers (climate and environmental) with some of the inputs they require to run their models. These data have found extensive use in numerous geospatial modeling and mapping studies (Caminade et al. 2014; Chabot-Couture, Nigmatulina, and Eckhoff 2014; Graetz et al. 2018; Osgood-Zimmerman et al. 2018; Rogers and Randolph 2006).

Frost days is a synthetic measurement that is based off of the minimum temperature. The full formula to calculate the number of days can be found in the cited Harris et al. (2014) or in New, Hulme, and Jones (2000).

Citation:

Column Name: Global Human Footprint

Derived Data Set Cell Size: 0.008333 decimal degrees (~1 km)

Summary Statistic: Mean

Year: Based on 1995-2004 data

Units: Global human footprint index between 0 (extremely rural) and 100 (extremely urban)

Description:

The average of an index between 0 (extremely rural) and 100 (extremely urban) at the DHS survey cluster location.

The Global Human Footprint Dataset is the Human Influence Index (HII) normalized by biome and realm, developed by the Last of the Wild Project (LWP-2). The human influence index is a global dataset given at spatial resolution of 1 x 1 km grid cells, which is created from nine global data layers covering human population pressure (population density), human land use and infrastructure (built-up areas, nighttime lights, land use/land cover), and human access (coastlines, roads, railroads, navigable rivers).

Citation:

Column Name: Growing Season Length

Derived Data Set: [Length of Available Growing Period (16 classes)]

Derived Data Set Cell Size: 5 Arc Minute (~0.0833333 decimal degrees; ~10 km)

Summary Statistic: Mode

Year: Based on data collected between 1961 and 1991

Units: Individual classes between 1 and 16. The values are listed below.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 days</td>
<td>9: 210 - 239 days</td>
</tr>
<tr>
<td>2</td>
<td>1 - 29 days</td>
<td>10: 240 - 269 days</td>
</tr>
<tr>
<td>3</td>
<td>30 - 59 days</td>
<td>11: 270 - 299 days</td>
</tr>
<tr>
<td>4</td>
<td>60 - 89 days</td>
<td>12: 300 - 329 days</td>
</tr>
<tr>
<td>5</td>
<td>90 - 119 days</td>
<td>13: 330 - 364 days</td>
</tr>
<tr>
<td>6</td>
<td>120 - 149 days</td>
<td>14: < 365 days</td>
</tr>
<tr>
<td>7</td>
<td>150 - 179 days</td>
<td>15: 365 days</td>
</tr>
<tr>
<td>8</td>
<td>180 - 209 days</td>
<td>16: > 365 days</td>
</tr>
</tbody>
</table>

Description:

The length of the growing season in days (reported in one of 16 categories) for DHS survey cluster locations.

The length of available growing period refers to the number of days within the period of temperatures above 5°C when moisture conditions are considered adequate for crop growth. Under rain-fed conditions, the beginning of the growing period is linked to the start of the rainy season. The growing period for most crops continues beyond the rainy season and, to a greater or lesser extent, crops mature on moisture stored in the soil profile.

Citation:

Column Name: Irrigation
Derived Data Set: Global Map of Irrigation Areas
Derived Data Set Cell Size: 5 Arc Minute (~0.0833333 decimal degrees; ~10 km)
Summary Statistic: Mean
Year: 2005
Units: Proportion of area equipped for irrigation

Description:
The average proportion of the area at the DHS survey cluster location that is equipped for irrigation at the time of measurement.

The agriculture sector is the largest global water user, accounting for about 70% of all water withdrawn worldwide from rivers and aquifers. In several developing countries, irrigation represents up to 95% of all water withdrawn (Siebert et al. 2013). The first version of the Digital Global Map of Irrigated Areas was produced in 1999 and consisted of a raster map of percentage area that was equipped for irrigation at a spatial resolution of 50 x 50 km (Döll and Siebert 1999). However, improved modeling methods and availability of data have made it possible to increase the spatial resolution of the map to 10 x 10 km. Hence, an updated global raster map of irrigation areas was developed by combining sub-national irrigation statistics and geo-spatial information on the location and extent of irrigation schemes (Siebert et al. 2013).

Irrigation data for sub-national units (e.g. districts, counties, provinces, governorates), collected from national census surveys and reports from institutions such as the Food and Agriculture Organization (FAO), the World Bank, and other international organizations were used in the analysis. To distribute the statistics on area equipped for irrigation per subnational unit, digital spatial data layers and printed maps were used. Irrigation maps were derived from project reports, irrigation subsector studies, and books related to irrigation and drainage. These maps were digitized and compared with satellite images of various regions.

Citation:
Siebert, S., V. Henrich, K. Frenken and J. Burke. 2013. “Global Map of Irrigation Areas version 5”. Rheinische Friedrich-Wilhelms-University, Bonn, Germany / Food and Agriculture Organization of the United Nations, Rome, Italy.
http://www.fao.org/nr/water/aquastat/irrigationmap/
<table>
<thead>
<tr>
<th>Column Name:</th>
<th>ITN Coverage YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derived Data Set:</td>
<td>ITN coverage in Africa 2000-2019</td>
</tr>
<tr>
<td>Derived Data Set Cell Size:</td>
<td>0.0418 decimal degrees (~5 km)</td>
</tr>
<tr>
<td>Summary Statistic:</td>
<td>Mean</td>
</tr>
<tr>
<td>Units:</td>
<td>Proportion of the population</td>
</tr>
</tbody>
</table>

Description:

The proportion of the population at the DHS survey cluster location protected by insecticide-treated bednets (ITNs).

Citation:

Column Name: Land Surface Temperature YEAR

Derived Data Set: MYD11C3: MODIS/Aqua Land Surface Temperature and Emissivity Monthly

Derived Data Set Cell Size: .05 decimal degrees (~6 km)

Summary Statistic: Mean

Units: Yearly average temperature in Degrees Celsius

Description:

The average annual land surface temperature at the DHS survey cluster location.

Land surface temperature (LST) estimates the temperature of the land surface (skin temperature), which is detected by satellites via looking through the atmosphere to the ground. The LST is not equivalent to near-surface air temperature measured by ground stations, and their relationship is complex from a theoretical and empirical perspective (Vancutsem et al. 2010; Yang, Cai, and Yang 2017; Zhou et al. 2012).

This is a global mean land surface temperature grid derived from the MODIS daytime and nighttime measurements in degrees Celsius at a spatial resolution of 0.05° × 0.05°. See section ‘Day and Night Land Surface Temp Year’ for detailed descriptions.

Citation:

Column Name: Livestock Cattle, Livestock Chickens, Livestock Goats, Livestock Pigs, Livestock Sheep

Derived Data Set: Gridded Livestock of the World 2

Derived Data Set Cell Size: 0.00833333 decimal degrees (~1 km)

Summary Statistic: Mean

Year: 2006

Units: Heads of Livestock per square kilometers

Description:
The average density of livestock at the DHS survey cluster location.

Livestock distribution surface maps were obtained from the Gridded Livestock of the World (GLW) v2.0 database produced in 2007 which provided modeled livestock densities of the world that were adjusted to match the Food and Agriculture Organization (FAO) national estimates for the reference year 2006 (Robinson et al. 2014). The surface maps were produced based on the collection of improved and detailed sub-national livestock data (derived from various national census reports and livestock surveys), new and higher resolution predictor variables, and revised modeling methods that included a more systematic assessment of the model accuracy and the representation of uncertainties associated with the predictions. More details of the modeling method can be found in Wint and Robinson (2007). We downloaded gridded livestock densities at a 1 km spatial resolution for cattle, goats, sheep, pigs and chickens.

Citation:
https://doi.org/10.1371/journal.pone.0096084
Column Name: Malaria Incidence YEAR

Derived Data Set: [Plasmodium Falciparum Incidence Rate 2000-2019](#)

Derived Data Set Cell Size: 0.0418 decimal degrees (~5 km)

Summary Statistic: Mean

Year: 2000, 2005, 2010, 2015, 2019

Units: Number of cases per person

Description:

The average number of clinical cases of *Plasmodium falciparum* malaria per person per year at the DHS survey cluster location.

A clinical case is defined as a malaria-attributable febrile episode (body temperature above 37.5 C), typically accompanied by headaches, nausea, excess sweating and/or fatigue, censored by a 30-day window (i.e., multiple bouts of symptoms occurring within the same 30-day period are counted as a single episode).

Citation:

Column Name: Malaria Prevalence YEAR

Derived Data Set: [Plasmodium falciparum PR2-10 2000-2019](https://malariaatlas.org/)

Derived Data Set Cell Size: 0.0418 decimal degrees (~5 km)

Summary Statistic: Mean

Year: 2000, 2005, 2010, 2015, 2019

Units: *Plasmodium* falciparum parasite rate

Description:

The average parasite rate of *plasmodium falciparum* (PfPR) in children between the ages of 2 and 10 years old at the DHS survey cluster location.

Citation:

Column Name: Maximum Temperature YEAR

Derived Data Set: CRU TS v. 4.05

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Units: Degrees Celsius

Description:

The average maximum temperature at the DHS survey cluster location. The maximum temperature is calculated from the modeled mean temperature and the modeled diurnal temperature range using a formula found in Harris et al. (2014). This dataset was produced by taking the average of the twelve monthly datasets for a given year.

The Climate Research Unit (CRU) of the University of East Anglia, UK, produces a range of global climate time series gridded data, which are derived from meteorological stations across the world’s land areas. The datasets are provided on high resolution (0.5 x 0.5 degrees) grids over the period 1901-2016 (Harris and Jones 2017; Harris et al. 2014). The main purpose for which this dataset was constructed was to provide modelers (climate and environmental) with some of the inputs they require to run their models. These data have found extensive use in numerous geospatial modeling and mapping studies (Caminade et al. 2014; Chabot-Couture, Nigmatulina, and Eckhoff 2014; Graetz et al. 2018; Osgood-Zimmerman et al. 2018; Rogers and Randolph 2006).

Citation:

Column Name: Mean Temperature YEAR

Derived Data Set: CRU TS v. 4.05

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Units: Degrees Celsius

Description:
The average temperature at the DHS survey cluster location for a given year. The mean temperature is a modeled surface based on weather station data. This dataset was produced by taking the average of the twelve monthly datasets for a given year.

The Climate Research Unit (CRU) of the University of East Anglia, UK, produces a range of global climate time series gridded data, which are derived from meteorological stations across the world’s land areas. The datasets are provided on high resolution (0.5 x 0.5 degrees) grids over the period 1901-2016 (Harris and Jones 2017; Harris et al. 2014). The main purpose for which this dataset was constructed was to provide modelers (climate and environmental) with some of the inputs they require to run their models. These data have found extensive use in numerous geospatial modeling and mapping studies (Caminade et al. 2014; Chabot-Couture, Nigmatulina, and Eckhoff 2014; Graetz et al. 2018; Osgood-Zimmerman et al. 2018; Rogers and Randolph 2006).

Citation:

Column Name: Minimum Temperature YEAR

Derived Data Set: CRU TS v. 4.05

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Units: Degrees Celsius

Description:

The average minimum temperature at the DHS survey cluster location. The minimum temperature is calculated from the modeled mean temperature and the modeled diurnal temperature range using a formula found in Harris et al. (2014). This dataset was produced by taking the average of the twelve monthly datasets for a given year.

The Climate Research Unit (CRU) of the University of East Anglia, UK, produces a range of global climate time series gridded data, which are derived from meteorological stations across the world’s land areas. The datasets are provided on high resolution (0.5 x 0.5 degrees) grids over the period 1901-2016 (Harris and Jones 2017; Harris et al. 2014). The main purpose for which this dataset was constructed was to provide modelers (climate and environmental) with some of the inputs they require to run their models. These data have found extensive use in numerous geospatial modeling and mapping studies (Caminade et al. 2014; Chabot-Couture, Nigmatulina, and Eckhoff 2014; Graetz et al. 2018; Osgood-Zimmerman et al. 2018; Rogers and Randolph 2006).

Citation:

Column Name: Night Land Surface Temp YEAR

Derived Data Set: [MYD11C3: MODIS/Aqua Land Surface Temperature and Emissivity Monthly](https://neo.sci.gsfc.nasa.gov/)

Derived Data Set Cell Size: .05 decimal degrees (~6 km)

Summary Statistic: Mean

Year: 2000, 2005, 2010, 2015, 2020

Units: Yearly average temperature in Degrees Celsius

Description:

The average nighttime land surface temperature at the DHS survey cluster location.

Land surface temperature (LST) estimates the temperature of the land surface (skin temperature), which is detected by satellites via looking through the atmosphere to the ground. The LST is not equivalent to near-surface air temperature measured by ground stations, and their relationship is complex from a theoretical and empirical perspective (Vancutsem et al. 2010; Yang, Cai, and Yang 2017; Zhou et al. 2012).

The global LST [night] grids, represent night time temperature in degree Celsius at a spatial resolution of 0.05° × 0.05°.

Land surface temperature measures the temperature of the ground (see covariate ‘Day Land Surface Temp Year’ for a detailed description). At night, the land surface typically cools off because it releases its warmth to the air above while no longer receiving sunlight (https://neo.sci.gsfc.nasa.gov/).

Citation:

Column Name: Nightlights Composite

Derived Data Set: Version 1 VIIRS Day/Night Band Nighttime Lights

Derived Data Set Cell Size: 15 Arc Second (~0.00416667 decimal degrees; ~500 m)

Summary Statistic: Mean

Year: 2015

Units: Composite cloud-free radiance values

Description:
The average nighttime luminosity of the area at the DHS survey cluster location.

Nightlights time series data are annual nighttime intensity data provided as raster surfaces with near global coverage. Nightlights measure the luminosity of an area during the nighttime hours as measured by the Visible Infrared Imaging Radiometer Suite (VIIRS). These surfaces allow differentiation of regions based on the density of population and the degree of electrification of dwellings, commercial and industrial premises, and infrastructure (Sutton et al. 2001). For our extractions we used the vcm-orm-ntl version of the dataset which removes outliers such as flares from petroleum extraction and other short-duration lights. The background data was also shifted to 0 to account for moonlight.

Citation:

Column Name: PET YEAR

Derived Data Set: CRU TS v. 4.05

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Units: Millimeters per day

Description:
The average potential evapotranspiration (PET) at the DHS survey cluster location. This dataset was produced by taking the average of the twelve monthly datasets, which represent millimeters per day, for a given year.

The Climate Research Unit (CRU) of the University of East Anglia, UK, produces a range of global climate time series gridded data, which are derived from meteorological stations across the world’s land areas. The datasets are provided on high resolution (0.5 x 0.5 degrees) grids over the period 1901-2016 (Harris and Jones 2017; Harris et al. 2014). The main purpose for which this dataset was constructed was to provide modelers (climate and environmental) with some of the inputs they require to run their models. These data have found extensive use in numerous geospatial modeling and mapping studies (Caminade et al. 2014; Chabot-Couture, Nigmatulina, and Eckhoff 2014; Graetz et al. 2018; Osgood-Zimmerman et al. 2018; Rogers and Randolph 2006).

Potential evapotranspiration is a synthetic measurement that was calculated using a variation of the Penman-Monteith formula. The full formula can be found in Harris et al. (2014). The formula uses the calculated or modeled numbers from the mean temperature, maximum temperature, minimum temperature, vapor pressure, and cloud cover surfaces. The number shows the number of millimeters of water that would be evaporated into the air over the course of a year if there was unlimited water at the location.

Citation:
https://doi.org/10.1038/s41597-020-0453-3

https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
Column Name: Precipitation YEAR

Derived Data Set: [CRU TS v. 4.05](https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681)

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Year: 2000, 2005, 2010, 2015, 2020

Units: Millimeters per month

Description:
The average monthly precipitation measured at the DHS survey cluster location in a given year. This dataset was produced by taking the average of the twelve monthly datasets, which represent millimeters per month, for a given year.

The Climate Research Unit (CRU) of the University of East Anglia, UK, produces a range of global climate time series gridded data which are derived from meteorological stations across the world’s land areas. The datasets are provided on high resolution (0.5 x 0.5 degrees) grids over the period 1901-2016 (Harris and Jones 2017; Harris et al. 2014). The main purpose for which this dataset was constructed was to provide modelers (climate and environmental) with some of the inputs they require to run their models. These data have found extensive use in numerous geospatial modeling and mapping studies (Caminade et al. 2014; Chabot-Couture, Nigmatulina, and Eckhoff 2014; Graetz et al. 2018; Osgood-Zimmerman et al. 2018; Rogers and Randolph 2006).

Citation:

University of East Anglia Climatic Research Unit; Harris, I. C., P.D. Jones, and T. Osborn. 2021. “CRU TS4.05: Climatic Research Unit (CRU) Time-Series (TS) version 4.05 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2020).” NERC EDS Centre for Environmental Data Analysis. Accessed October 21, 2021. https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
Column Name: Rainfall YEAR

Derived Data Set: Climate Hazards Group InfraRed Precipitation with Station data 2.0

Derived Data Set Cell Size: 0.05 decimal degrees (~5 km)

Summary Statistic: Mean

Units: Millimeters per year

Description:
The average annual rainfall at the DHS survey cluster location.

A high quality, long-term, high-resolution rainfall dataset is key for supporting drought-related risk management, food security early warning, and other related studies (Shukla et al. 2017).

Satellite-based rainfall estimates may provide plentiful information with spatiotemporal high-resolution imagery over widespread regions where conventional rainfall data are scarce or absent (Li et al. 2010). However, previous studies have shown that the estimates have several limitations, because none of the satellite sensors directly detect rainfall and the relationship between observations and precipitation is based on one or numerous proxy variables (Toté et al. 2015; Wu et al. 2012).

A wide variety of satellite-based rainfall products derived from multiple data sources exist at present. The Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) is a relatively new rainfall product with high temporal and spatial resolution, and is based on multiple data sources (Paredes Trejo et al. 2016).

The CHIRPS dataset builds on previous approaches of interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations (Funk et al. 2015). The algorithm (i) is built around a 5 km climatology that incorporates satellite information to represent sparsely gauged locations, (ii) incorporates daily, pentadal (five-day), and monthly readings from 1981 to present from CCD-based precipitation estimates, (iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and (iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights (Funk et al. 2015; Paredes Trejo et al. 2016).

Citation:

Column Name: Temperature MONTH

Derived Data Set: [WorldClim Version 2](http://worldclim.org)

Derived Data Set Cell Size: 30 arc seconds (~0.00833333 decimal degrees; ~1 km)

Summary Statistic: Mean

Year: 1970-2000

Units: Average temperature for months January to December in degrees Celsius

Description:

The average monthly temperature at the DHS survey cluster location.

Interpolated climate data layers are created by collecting large amounts of weather station data which are used to produce climate maps using a smoothing algorithm. A commonly used interpolated climate data source is WorldClim (Hijmans and Graham 2006). This is a set of data layers of the whole world at a 1km resolution. The variables available are monthly mean, minimum and maximum temperature, monthly precipitation and a set of bioclimatic variables. These maps were created using monthly averaged data over the period 1970-2000 from thousands of weather stations. The data were interpolated using a thin-plate smoothing spline algorithm with altitude, longitude and latitude as independent variables (Hijmans and Graham 2006; Hutchinson 1995).

Citation:

Column Name: Travel Times 2015
Derived Data Set: Malaria Atlas Project Accessibility to Cities
Derived Data Set Cell Size: ~1 km
Summary Statistic: Mean
Year: 2015
Units: Minutes

Description:

The average time (minutes) required to reach a high-density urban center, as defined by Pesaresi and Freire (2016), from the DHS survey cluster location, based on year 2015 infrastructure data.

Travel times or accessibility estimates provide a useful measure of the extent to which regions are rural or urban, as well as the degree of their connectedness to the national system of transportation. For instance, locations that are near major roads would be relatively well connected, even if they were some distance from major cities (Linard and Tatem 2012).

The Malaria Atlas Project (MAP), in collaboration with Google, EU Joint Research Center (JRC) and the University of Twente, has developed a new accessibility estimate (measured in travel time) for 2015 (Weiss et al. 2018). The analysis considered data on recent expansion in infrastructure networks, particularly in lower-resource settings, which are provided in unprecedented detail and precision by OpenStreetMap and Google. Using such data, the MAP developed a global accessibility estimate that quantifies travel time to cities by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centers within an established geospatial-modelling framework.

Citation:

Column Name: U5 Population YEAR

Derived Data Set: WorldPop

Derived Data Set Cell Size: 0.000833333 decimal degrees (~100 m)

Summary Statistic: Mean

Year: 2000, 2005, 2010, 2015, 2020

Units: Number of People

Description:
The number of people under the age of 5 (U5) at the time of measurement (year) living in the 5 x 5 km pixel in which the DHS survey cluster is located.

An understanding of the numbers, characteristics and locations of human populations underpins operational work, policy analyses and scientific development globally across multiple sectors. Most methods for estimating population rely on census data. However, in most countries population censuses are conducted every 10 years at best and can be longer in many low-income countries (Alegana et al. 2015). Thus, data from the census can often be outdated, unreliable and have low granularity (Tatem 2014). New data sources and recent methodological advances made by the WorldPop project (University of Southampton) now provide high resolution, open, and contemporary data on human population distributions allowing accurate measurement of local population distributions, compositions, characteristics, growth and dynamics across national and regional scales. High resolution gridded population distribution estimates of the total number of people per pixel - broken down by male/female and 5-year age groupings - have been created.

Citation:

Sorichetta, Alessandro, Graeme M. Hornby, Forrest R. Stevens, Andrea E. Gaughan, Catherine Linard, Andrew J. Tatem. 2015. "High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020" *Scientific Data* 2. http://doi.org/10.1038/sdata.2015.45

Column Name: UN Population Count YEAR

Derived Data Set Cell Size: 30 arc seconds (~0.00833333 decimal degrees; ~1 km)

Summary Statistic: Sum

Units: Number of people

Description:

The UN-adjusted count of people at the time of measurement (year) living in the 5 x 5 km pixel in which the DHS survey cluster is located.

Gridded Population of the World, Version 4 (GPWv4) consists of high resolution estimates of human population (number of persons per pixel) on a continuous global raster surface, which is consistent with national censuses and population registers, for the years 2000, 2005, 2010, and 2015. The files for this dataset were produced at a spatial resolution of 1 x 1 km.

The GPW is quantified by population data (i.e. tabular counts of population listed by administrative area) and spatially explicit administrative boundary data, and use an areal-weighting method (also known as uniform distribution or proportional allocation) to disaggregate population from census units into grid cells through the simple assumption that the population of a grid cell is an exclusive function of the land area within that pixel (Doxsey-Whitfield et al. 2015).

Citation:

Column Name: UN Population Density YEAR

Derived Data Set Cell Size: 30 arc seconds (~0.00833333 decimal degrees; ~1 km)

Summary Statistic: Mean

Year: 2000, 2005, 2010, 2015, 2020

Units: Number of people per square kilometer

Description:

The average UN-adjusted population density of the area at the DHS survey cluster location.

Gridded Population of the World, Version 4 (GPWv4) consists of high resolution estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, and 2015. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to ~1 km grid cells.

The population density rasters were created by dividing the population count raster for a given target year by the land area raster.

Citation:

Column Name: Wet Days YEAR

Derived Data Set: CRU TS v. 4.05

Derived Data Set Cell Size: 0.5 decimal degrees (~55 km)

Summary Statistic: Mean

Units: Number of Days per month

Description:

The average number of days per month receiving ≥0.1 mm precipitation at the DHS survey cluster location. This dataset was produced by taking the average of the twelve monthly datasets, which represent days per month, for a given year.

The Climate Research Unit (CRU) of the University of East Anglia, UK, produces a range of global climate time series gridded data, which are derived from meteorological stations across the world’s land areas. The datasets are provided on high resolution (0.5 x 0.5 degrees) grids over the period 1901- 2016 (Harris and Jones 2017; Harris et al. 2014). The main purpose for which this dataset was constructed was to provide modelers (climate and environmental) with some of the inputs they require to run their models. These data have found extensive use in numerous geospatial modeling and mapping studies (Caminade et al. 2014; Chabot-Couture, Nigmatulina, and Eckhoff 2014; Graetz et al. 2018; Osgood-Zimmerman et al. 2018; Rogers and Randolph 2006).

Wet days, or the number of days a year that received rainfall is a partly-synthetic measurement. It combines the number of observed days with rainfall from weather stations with the number of days that should have received rainfall using a formula found in either New, Hulme, and Jones (2000) or Harris et al. (2014).

Citation:

https://doi.org/10.1038/s41597-020-0453-3

https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
REFERENCES

Harris, I. C., and P. D. Jones. 2017. *Cru Ts4.00: Climatic Research Unit (Cru) Time-Series (Ts) Version 4.00 of High-Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901- Dec. 2015).* Centre for Environmental Data Analysis. http://dx.doi.org/10.5285/edf8f6fdaa48abb2c8af7e846a86.

